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A number of plane problems of filtration with a limiting gradient can be reduced c1J to 
obtaining the stream function \I) as a solution of the first boundary value problem for the 
equation a% 

7JJ (to + I.) r + (W - h) -$- + -$$ = 0 (0.i) 

in the semi-infinite strip 0 < w < m, 0 < 0 < fIO with a cut along the line 9 = 9, < 90 
e~end~g either from the point w = u to UI = 0 (Problem A), or from the point w = a 
to w = 00 (Problem B). 

Below (Sect. 1) we reduce these problems to dual integral equations whose kernels con- 
tain hypergeometric functions F (s, - u) = F (2 -+- is, 2 - is, 3, -18) dependent on the 
argument u = w / h and a single parameter s. The hypergeometric functions are expres- 
sed in terms of the associated Legendre functions. This enables us to write their integral 
representations in the form of Fourier sine and cosine transforms and then, following the 

work of Rukhovets and Ufliand p] (see also p]), reduce the dual equations to the Fred- 
helm equation of the second kind (Sect. 2). This equation can be solved effectively when 

the values of a are small (a~ = a I h < I) and this enables us to obtain those basic 
characteristic features of the filtration flow, which are of some interest to us, As an ex- 

ample, we establish in Sects. 3 and 4 the position and size of stagnation zones which 

arise when the source is situated near an impermeable boundary (this corresponds to Prob- 
lem A). and near the rectilinear delivery contour (a particular case of Problem B). 

1. We consider the following two problems. 

Problem A. To find a solution of Eq. (0.1) in the semi-infinite strip 0 < w < CXJ, 
0 < 0 < OD with a cut 9 = 0r, 0 < u) < n, assuming specified values on the boundary 

of the strip and on the cut. 

Problem B, To find a solution of Eq. (0.1) in the semi-infinite strip 0 < 11) < 110, 

0 < 0 5 00 with a cut Q := 01, a Q UI < co assuming specified values on the boundary 

strip and on the cut. 
Let us introduce a new independent variable I = w f 3, into (0.1) and seek tp as the 

function of u and 8. We set 
Fp 04 Q) = Y (% 0) + $1 (% Q) 6.i) 

where $r (II, 0) is the solution of (0.1) in the semistrip 0 Q UI = lu < 00, Q < Q < Qo 
without a cut, assuming the same values as 9 (u, Q) at the boundaries 8 = 0, Q = Qo 
and w = 0 . The function % (u, Q) can readily be found. 

bet the boundary conditions be given by 

$l (u, 0) = fx (u),% (4 Qo) = fa (4, $164 Q) = v(e) W) 
We shall effect the integral transformation with respect to the variable u+ assuming [4] 
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\Isl (k 0) = ‘ha J Z (i + 83 cth nrF (I, - u) *I* (8, 8) & 

F (I, - “u, = F (2 + ss, 2 - tr, 3, - IL) 

Then $5 (8, 0) will be given by 

** (r, e) 
de’ --pw(d’.e)=:~2cp(~) 
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(cont.) 

(f l 4) 

Having found 9% (8, O),we can use (1.3) to define *I (s, 8). 

We can therefore assume that the function cps (s, 9) is known and consider at once 

Problems A and B with zero boundary conditions at 6 =O, 6 = &, u = 0, without loss 
of generality. 

Let us now consider Problem A with the following boundary conditions: 

\I, 0% 0) = $ (0, 6) = \p (u, 60) = 0 

9 (u, 61 f 0) = r* (u), O<u<ab=alL 0.6) 

We denote the trasform of the required solution (i.e. the result of applying the inte- 
gral transformation (1.3)). by $)* (g, 9). When 0 ( 6 ( 6s we have, with the boundary 
condition at 6 = 0 and u = 0 taken into account 

q* (a, @) = 18 (a) sh (8 G.7) 

and for 6, < 6 < e. we have similarly 

+p+ (a, e) = B (4 t3h 8 tee - e) (1.8) 

When 6 = 0, we have by virtue of (1.6) and (1.3) 

** (I, 8 + 0) -** (db-0) = f (i + t4v (3, -u) if++) -5-w du =-01 (4 

0 

from which we obtain 

B (s) - la (s) + A (s) sh se& sh s e,, ep =eo - e, W) 
To satisfy all conditions of the problem we require that the derivative ag / d6 is con- 

t~uous when 6 = 6, and u > ao , and that the condition J1 (u, 6, - O)S= #_ (u), u < ao 

holds. With (1.3) and (1.9) taken into account, these conditions yield 
m 
’ 
\ 

8 (1 + 2) cth ns F (8. -u) C (s) do = 0 (*<UC=) (1.10) 

0 

oa 8a ti + @) s th rts 
sh h sh *9 C (s) F (s, - u) dr z h (u) 

ah &IO 
(0 < u < 00) 

0 

c (s) = s [A (8) sh s0o + u (s) ch &I / sh Sea (1.11) 

2f (4 h (a) 1-m-.+..- F (8, - u) 6 (2) u’s 
0 

(1.12) 

Th~,~oblem A is reduced to solving the dual equations (1.10) in order to define C (s). 
Let us now consider Problem B with the following conditions : 
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l# (u, 0) = * (0, 0) = $ fu, Ro) = 0, * (u, e, f 0) = F* (4, u > Qo (1.13) 

We can, as before, write the transform $* (s, 6) in the form given by (1.7) and (1.8) 
where B (s) and A (s) are related by (1.9) in which u (s) has been related with 

s1(s) = a+ (8) -z_ (s), zf @) = T (1 + U) F& (u) F (6, - U) du (1.14) 
00 

Satisfying now the continuity condition for (3\p / 80 when I3 = e, and u < a& and the 
condition tp(u, 9, - 0) = F_ (a), u > 00, we obtain the following dual equations: 

a3 

s 
~(~+~~)cth~$C(~)~(~,-~)~=O (uo<u<~) (1 .i5) 

0 

n3 

A (s) sh se1 - \ (1 + u) J”_ (4 F (s, - ‘4 du 1 (1.16) 
. 
“0 

b (u) = s .+ ;h;ss?) [?& + ‘- (‘) ” ‘fh ] F (s. - u) ds 
sh &I sh s9z 

0 

(1.17) 

In what follows we shall find it convenient to integrate the dual equations (1.10) and 
(1.15) with respect to u , from u to og. Taking into account the relation 

00 

F 
F (2 + 88, 2 -is, 3,-u) du= ’ -F (li + is, i -Is. 2. - u) 

; 
1 + s? 

(1.18) 

which follows from the differentiation formulas of the hypergeometric functions 15 and 

61, we obtain a) 

c 
s3 cth IIS FI (s, - u) C (s) ds = 0 (ao<u<m) (1.19) 

i 
co 

c r2 Fl (I, - 4 c (4 
shsfhsh& &=_ = i- (4 

il 
th m sh s00 c I --+W 

M 

+ !i ’ shs@othnr 
ch &*h *61 f;l (s, -- u) d (s) ds 3 Hl (u) + ri 

for Problem A and 
0 

03 

s 
scthnsFl(s,-u)C(s)ds=O fu > Qo) (1.20) 

0 

a, 

s 02 cth ~tr C (s) Fl (8, - u) 
sh ~9, 

sh &I sh 58% 
ds =+ 

s 
hz (u) iu z Ha(u) + ra (O<U<Q) 

0 ‘1( 

for Problem B. Here 
(1.21) 

FE (s, - u) = F (1 + is, 1 - is, 2. - u), Fn LT. - an\ = F (is. - is. 2. - n,,) 

The constants of integration ,-, and rz are defined from the solution requirements. 

2, 1”. To reduce the dual equations of the form (1.19) and (1.20) to the Fredholm 
equations of the second kind, we shall use the method applied in p and 33 for solving 
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dual equations containing associated Legendre functions. This method makes use of the 
integral representations of the Legendre functions in the form of sine and cosine trans- 
forms. Corresponding representations can also be obtained for the hypergeometric func- 

tions appearing in the present paper. In particular, for F1 (s, - U) we can obtain 

P 

FI(~,-I+=&! sin2’Fsh’ldq , u=shzp 
o )/shap--shaq 

(W 

If-1 (a, - Is) = - (au)-‘th N [R, (8. u) + R_ (r. u)] = (2.2) 

Functions 

(2.3) 

are analytic in the half-planes Imr < I and lmr > -1 respectively. 
The above formulas are obtained by using analytic continuation to change the argu- 

ment of the hypergeometric function to l/n and utilizing their representation in the 

form of an Euler integral. They can also be obtained directly, although more tediously, 
from the integral representations of the Legendre functions [5 and 61 taking into account 

the relation 

F (n + Is, n - is. c, - u) z (- 4)” 
r (c) r (is) r (- Is) 

21‘ (n + is) r tn - q x 

x & [(~)“‘h-c+1)(pn;:+l(*+2.)+p~~-c+l(l +2@)] (2.4) 

connecting the hypergeometric functions appearing in this paper, with the associated 
Legendre functions. 

2’. We shall seek a solution of (1.19) in the form 

C(s)=s-lyq(r)sinndr. sh2 PO = ao 

b 
(2.5) 

where cp (t) is a function continuously differentiable on the segment (0, 2/30) . In addi- 

tion, we stipulate that the first equation of (1.19) be an identity. Indeed, using (2.2) we 
can write the left side of the equation (1.19) as 

m 

I (u) = &- \ s”R+ (s, u) C (8) ds 
. 

--a, 

In the lower half-plane the function R+, as follows from (2.3), decreases with s -+ od 

at least as fast as s-‘~QiDa, the function C (s) is, by virtue of (2.5). an entire analytic 
function and increases with s --, 00 not faster than s-reni~. Since we also have fl> PO 

when u > a0 we have as the result I (11) = 0. Let us set 

2&h JM sh So, sh S& / sh O. = 1 + e, (4 (2.6) 

Inserting the expressions (2. l), (2.5) and (2.6) into the second equation of (1.19). we 
transform it into the form 
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Let us denote the cosine transform of a,. (s) by 

03 

EI (a) = 
c i%(s) coa at dr 
6 

It can easily be shown that the product 2pI 

(1 + et (4) 5 cp (z) sin s-r dz 
0 

is the sfne transform of the quantity 
a%, 

X(r)=(p(r)+rls q(r)[&(r-a)-&(s+a)]da 
0 

(2.7) 

(2.8) 

(2.9) 

The second cofactor in the integrand of (2.7) represents, in turn, the sine transform 
of a function equal to ‘Issh’l,~ fsha B - sh”lsq 

when r~ < 2@, and equal to zero when -tl > 28. We can therefore apply the convolution 

theorem for the sine transforms j7-J to (2.7). to obtain 

(2.10) 

Setting now cht/st = 6 we transform (2.10) into the Abel integral equation [8] whose 

solutioti is Sh”fr+ 

X(z)= 4 d 
nsh’/sz dz s 

UHI (u) + un cdu 

a dsh” ‘/2? -u 

(2.1 I) 

3, 1”. We apply the results obtained in the previous Sections to problems which 
actually arise during the investigations of plane filtration flows following the law of 
filtration with a limiting gradient. Study of a flow generated by an aggregate of several, 
equal intensity sources, situated at the vertices of a regular n--sided polygon leads n] to 
the following particular case of Problem A: 

%p (u, 0) = 0, $ (0, 9) = 0 (0 < ,e Q @,I, 0 (U, 8,) = 0 (0 Q u G aof (3.4) 
*@I, 81 = o(e- e,) I a (8, G 8 Q eo) 

9 fu, 8,) = q (f3@ = n, e, -; TI (n - if I 6 

Here the problem of determination of the boundary of the stagnation zone appears to 

be the most important one. Within the symmetry element of the flow, this boundary 
depends on the position of the tip of the stagnation zone relative to the source 

?&=zoffyo= + 
O” &p(u, 0) du s a0 -ui 
n 

(3.2) 

and on the form of the boundary arc 0 
” 

z(e)-+ = x (8) + iy (Q) - 20 = f e"d0, 0 < 0 < $1 (3.3) 

Here x and y are the coordinates in the plane of the flow, their origin coinciding with 
one of the sources and the axis directed towards the center of symmetry of the flow. 



Dual integral equations arising in filtration problems 505 

Setting n = 2 we obtain a flow due to two sources of equal intensity. 

An important case of the problem B arises in the study of a flow due to n sources of 
intensity 2Q distributed at the vertices of a regular n-sided polygon and a sink of inten- 
city 2Qn situated at its center (a = I, 2, . ..). We have 

9, = n, 80 = II (i + n) /n, $3 (u, 0) = 0, F, (u) = F_ (u) = Q = const (3.4) 

In this case an outer stagnation zone occurs, its boundary is defined by the relations 

(3.2) and (3.3). We also have 0 < 9 < Oo, the coordinate origin coincides with one of 
the sources and the sink lies on the negative part of the z-axis. 

When n = 1, the problem corresponds to an equal intensity source-sink pair. 
In all cases the quantity a0 is assumed given and the radius of the source aggregate is 

to be determined (i.e. we essentially solve the converse problem). 

The above flow as well as some other flows leading to Problems A and B are all con- 

sidered in [1]. 

2’. It can easily be shown that the solution rpr (u, 6) (see Sect. 1) with the boundary 

conditions (3.1). has the form (0 < 9 < 6,) 

91(u,0)= - ~'0 T+P 
01 s oth 

“hsFfg se F (8, - u) d-8 (3.5) 

so that 
f+ (u) = f- (u) = - $1 (u, 6,) (u < QO), o (8) = 0 (3.6) 

and in accordance with (1.12), (1.21) and (1.18) we have 

co 
24 

Ml(U)== --- 
es s 

F1 (s, -U) Sh Se1 Sh So2 dP 

th na shs00 * 
0 

(3.7) 

Replacing the function Fl (s, - u) with its integral representation (2.1) and inserting 

the resulting expression into (2.11) we obtain after some manipulations 

where e, (s) is defined by (2.6). Further, the kernel of (2. S),with (2.8) and (2.6) taken 
into account, admits the representation in the form of a uniformly converging series 

El (r - o) - El (T -I- a) = 2ra E,, - V3 ra (T* + aa) El% + . . . (3.9) 

Elk_ = 
5 

sskel (I) ds 
0 

Taking into account (3.8) and (3.9) we find from (2.9), that the solution cp (T) can be 
written as ‘p (r) = - 2Q 183 + 91 (4 (3.10) 

where ‘pl (T) is a function which can be expanded into a series in odd powers of T, for 

any value of r,. 
3’. The solution of the initial problem with 0 < 6 < 9, is given by 

(p (u, e) = Y (u, e) + ~pl (u, e) = (3.11) 

s’c(s)+~ (l+s’) 1 sh de sh sea F (#, _ U) ds 
thn8shzBo 

where C (s) is defined by (2.5). 
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When u < a0 and 6 = 6, , we have $ (u, 0,) GE 0 and the derivative &# / a0 must 
be an integrable function of u. Taking into account (l.lQ(2.2) and (3.10) we have 

cp’ (e) cos srdr - cp (Z&I) cos 2Bos 1 X 

a, 

X 
‘_ sin2p.s _ 2 

1 s 
cos 2Q” [sh TI - lf Sh" 9 - sh’p] dtl 

s 
a I/sh 9 - sht$ 1 

rlo (3.12) 

Behavior of the solution near the point u = aa (fi = 80) can easily be determined by 
considering the integral (3.12) as an inverse Fourier cosine transform. When 8 ti 00, the 
expression within the square brackets is of the order of 

9-i sin 2B.P + Cs-“‘estBs 

therefore the asymptotic form of the integral as 0 -, BO is given by 

c, (00 - p)-“1 cp (200) + czcp (2Bo) + 0 (1) 

Hence the integrability of q / a6 implies that 

cp GPO) = 0 (3.13) 

which can be used to determine the constant r,. Finally, inserting (3.11) into the expres- 

sion (3.3) for the coordinates of the boundary of the stagnation zone and taking into 

account (3.10) and (3.12). we obtain 

h 1; (0) - S Ch Se - i sh So 
se0 

& so2 ,..h nsx 

a 
x (cp’ (2P:)) sin 2430 - c p” (T) sin ST& > I d$s 

o=o, 
(3.14) 

\ *o II=0 

Expression (3.11) remains finite when 0 f 6 f Or. 

4”. let us now obtain an approximate solution of the problem for small values of PO. 

Using (3.8). (3.9) and (3.13) we obtain from the integral equation (2.9) the following 
expression 

,(&[-i+($ -~,,-~~~ol~~+~(~+E)to(P~~)] 

E = En + Eu 

Insertion of cp (T) into (3.14) yields 

(3.15) 

(3.16) 

When s -* 00, the expression in front of the square bracket in (3.16) behaves as 

r/2 (I - f) &e-al)+*e,Therefore for small fro we have 
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- 2po (01 +I+$[ 
sh SO sh s& cth ns 

sh>Oo 
- t/se- @1-s) & _ 

I II 

(3.17) 

To determine the location of the stagnation zone completely, we require the value of 

ZO. Using (3.11),((1.18) and (3.13) we have from (3.2) 

&T 
e!? s ‘;;;;f cth nsds + 0 (/302) 

0 

(3.18) 

5”. In fl] we have constructed the limit solution of Problem A (a0 = PO = 0) which 
enabled us to obtain lower estimates for the stagnation zone sizes. However in that case 

the boundary of the stagnation zone consisted of branches extending to infinity and the 
solution did not therefore possess any inherent value. The solution given above for small 
j3s approximates the limit solution at all 0 such that or - 0% PO and it is only in the 

vicinity of 8 = 0, that the boundary of the stagnation zone begins to deviate appreciably 
from the limit boundary, for the reason of absence of the infinite branches. 

As an example, we shall consider a flow due to a pair of sources of equal strength 
(strength q = 2Q). 

In thiscase we have O. = 20, = n. The limit solution was constructed in fl]. 

We also have 

Do 

A20 = 4Q \ 
s sh ‘Jtsn ch sn 

x * sh2 sn 
ds = ‘*Q = 0.5214 

0 

For the tip of the stagnation zone (0 = %n) we have 

hz (‘/*a) = 

(3.19) 

(3.20) 

(3.2i) 
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Figure 1 depicts the boundaries of the stagnation zones for various values of 

Fig. 1 

We can write the equation of the boundary of 
the stagnation zone in the form 

(points on Fig. 1) where L= z(r/~n) and g (%n) 
are given by (3.21). This equation is sufficiently 
accurate for practical purposes. It has the shape 

of an astroid elongated in the y,-direction and its 
total area is given by 

hL -q-w (3.23) 

We remind that here Q = l/zq where q denotes 
the output of a single pore per unit capacity of 

the layer. 

4. 1’. We shall now consider the case of Prob- 
lem B given in Sect. 3,l”. and defined by the 

conditions (3.4). in more detail, Here from (1.14) 
we obtain z+ = z_ = PQs-‘F (is, - is, 2, - as), e1 E 0 

and in accordance with (1.1’7),(1.18) and (1.21) ) 
co 

H,(u)=-2Q s 
s 

, shoe0 F1(r, - U)FO(S, -fro) * 
th 

0 
sh bei sh ~0, 

Using (2.4) and the well known integral representations of the Legendre functions we 
can obtain the following expression for the function F. (s, - no) E F(~s, - is, 2, - a,,): 

2kY 

I; (is, -is, 2, - ~0) = 
2 

c 

s cth? 8,~ sh l/zt sin st + ch l/27 cos .e dr = 

n (1 + 9) . 
0 

(SIP po - sh2 1/2+ 

1 
280 

=- 
s 

sh ‘12~ (ch z - sh2 30) Sin sr dt, sh2po = ao 
II.7 

0 
sh2 80 (sh2 80 - sh2 1/zr)“z 

(4.X) 

To solve Problem B we can use again the representation C (s) in the form (2.5). We 
find however that the requirements imposed on cp (T) become somewhat different since 
the first relation of (1.20) contains s. while (1.19) contains sa. Repeating the arguments 
of Sect.2, 2” we find, that in the present case we need the following necessary condition: 

281 

c 
q,(r)dr=O (4.4) 

; 

in addition to the sufficient condition of integrability of cp (7) on the segment (0, 280) . 
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Condition (4.4) will be used later to determine the constar,’ rz. The problem of deter- 

mining cp (T) again reduces to an integral equation of the form (d. 9) in which el (a) is 
replaced by ez (s) = r/t cth ns sh ~90 [sh se, sh s@$l - 1 (4.5) 

and HI (n) in (2.11) by */*HZ (u). Using the expressions (4.2) and (4.3) we find that the 
function cp (T) can be written as 

9(r)=--$ 
ah ‘/or (eh t - ah2 PO) 

sha p0 (sh’ PO -sh’ ‘/ST)“’ 
+ rr6 (T) 

(4.6) 

Here 6 (t) satisfies the equation 
sh 

ON++ s &X)K(cl,r)dar=1 ahr 
at (4.7) 

where 0 

K (a, T) = 2 
s 

sinas ain TS cth Ils sh seo _ i 
2ah ths ah &s 1 ds 

0 

(4.8) 

By (4.7) and (4.8) 5 (T) can be expanded into a series in odd powers of T . 
2”. Using the expressions (1.3). (1.7), (1.16),(2.5),(4.3) and (4.6). we can write the 

solution * (u, 0) for 0 ( 0 < 6, as 

$(u,B)=fy s~~$~~~:e [fz~~(r)ainndrf2QF~(s,-_a)]~(~,-u)ds= 
0 0 

= _ O” (’ + ‘*) sh se ” 6 (T) sin ST&& 
?*U~ 

2 s s o thnsahs& o 

Coordinates of the boundary of the stagnation zone are given here by the expressions 

derived from (4.Q (3.2) and (3.3) 

For small flo the above relations give 

IIo=2Q[ ";;ie:" ds + O(ao) 

5 iz (e) - zo] =: - 
{2qeio (i _$)Ts[ shamans -ee-“]ds- 

(4.10) 

(4.11) 

(4.12) 

(4 = e1 - e) (4.13) 

with 5 (t) obtained from (4.7) and the constant ra from (4.4). 

3’. When studying the flows leading to Problem B we must know not only the boundary 
of the stagnation zone, but also the reduced pressure drop H between the sources and sinks 
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(regarded here as pores of small, though finite radius). 
The reduced pressure can be found as a function of (CL, 0) by interating the equations 

(see PI> aH i-tua* aH (1 + U)aaq 
au=---’ 

--__._.-- 
u’l a0 a0 U au (4.14) 

Let us use these equations to determine the pressure difference between the points on 
the streamline 1c) = 0. To start with, we will choose a point u = ~1~ > i, i. e. a point in 
the physical plane adjacent to the source (at a distance of the order of R, = Q/(nur)). 

Pressure difference between this point and the tip of the stagnation zone is 

Pressure difference between the points on the boundary of the stagnation zone is 

Ho - H (0) = j x (0) de = ra \ 
m(l + sa) (ch SO - 1) 

see 

'0 8 th TCS sh 801 s 
6 (r) sin s&d2 

0 0 
In particular, when 0 = 0, we have 

Up to now we have been considering the part of solution corresponding to 0 < 0 Q 0,. 
But since Problem B is obviously symmetric, all the formulas remain valid also for region 
0, f f~ < I& provided that 0 is replaced by &, - 0 and 0 hy & = On - 8, and, that the 
coordinate origin coincides with a sink instead of a source. We can thus construct the 

whole of the boundary of the stagnation zone. 

4”. Example, The formulas derived enable us to determine all quantities of prac- 
tical interest, relating to the sink-source problem p] (or, which amounts to the same, 

to the problem of a source situated near a rectilinear delivery contour (i.e. the line of 

constant pressure)). For this case we have Q, = 6s = x. 
Formula (4.12) yields the following expression for the distance between the source 

and the tip of the stagnation zone Do 

AZ,, = ZQ \ S? _%+ rls zz $ (4.17) 
,I 

Further, from (4.14) we have 
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Finally, (4.16) gives 

ilo - H(n) = “/snp~-“Q + a/sn&J-JQ - J”@JQ 

Setting 6 = n in (4.18) we find 

(4.19) 

k [z (n) - zo]/Q = - s/‘/a~80-s(i - 0.4932) + i F/$0-’ .- 0.1) (4.20) 

This relation connects the parameter fin with the half-distance between the source and 

the sink LO = - z (IT). Figure 2 depicts the boundary of the stagnation zone computed 
according to the formula (4.19) for several values of 00 = ~11~~0. 

Fig. 2 

The author thanks G. I. Barenblatt, R, L. Salganik and A. E. Segalov for valuable advice. 
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